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ABSTRACT

The aerodynamic loading for deformed wings with elevons in both
subsonic and supersonic flow is considered. The solution procedure falls
into the potential flow category with appropriate restrictions. For
subsonic flow, a lifting surface Kernel function formulation is used in
which the local pressure loading for both wing and elevon is determined
simultanepusly in a semi-closed summation manner. Cases under study
included gaps between wing and elevon in addition to arbitrary wing-
elevon deformations. Results for all cases compared very well with
experimental data. Experimental data taken in a low speed wind tunnel is
also presented for a cropped delta wing and rectangular elevon in which
the wing-elevon gap was the primary test variable. For supersonic flow,
3-D supersonic theory forms the basis for the solution procedure.
Deformations are accounted for with the use of doublet paneling added to
the basic 3-D solution. Results agree very well with existing experi-
mental data. The gapped elevon and thick wing trailing edge problem is

also addressed with satisfactory results.
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I. INTRODUCTION

Subsonic Flow

It has been observed that failures associated with the control
surfaces have occurred on certain missile configurations. It is believed
that these failures have occurred because of adverse loading on the
control surface due to large deformations in the wing surfaces. A pre-
liminary studyl was completed which attempted to identify the aerodynam-
ic changes which occurred because of these deformations. The present
study addresses the problem in more detail including various wing-elevon-
gap planform configurations, subsonic and supersonic Mach numbers, moderate
wing and elevon deformations of an arbitrary nature, and blunt trailing
edges for the wing.

In recent years, major efforts have been made to model multi-element
airfoil configurations (wing-elevon combinations) and to predict resulting
loads and moments. Most of the research efforts concerning these multi-
element lifting surfaces have been two-dimensional analyses as typified

3

by the early work oi Glauert in 1924 and 1927 and more recently by the
work of Halsey.lh5 However, the case of the wing, air gap, control
surface combination has generally been neglected as pointed out by Ashley6
who also expressed the need for such an analysis.

Extension of analyses to include three-dimensional effects or finite
wings has generally employed vortex lattice formulations or some form of
constant pressure paneling such as that of Woodward7 and Lan.8. The Lan

approach has received considerable attention of late since the leading

1
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2
edge suction terms and Kutta condition at the trailing edge are properly
accounted for in the analysis. DeJarnette9 extended the "strip" approach
of Lan to provide for a 'continuous' loading in the spanwise direction.
Aside from the Lan-DeJarnette formulation, general vortex lattice
approaches suffer from traditional shortcomings such as large computer
storage and long run times even on today's high-speed computers. Formu-
lation of the problem using the Kernel function approach in its usual form

b

as typified by Cunninghaml has been generally neglected but offers the
potential for increased accuracy, lower computer run times and less
storage than does the vortex lattice approach. The Lans—DeJarnette9
analysis requires comparable run times and storage and offers a viable
alternative to the solution of the problem at least for single element
airfoils. Extension to multi-element airfoils, as far as is known, has
not been completed.

For the most part, previous theoretical analyses have been restricted
to planar lifting surfaces with no camber or twist. Wing-elevon con-
figurations generallv have been sealed-gap cases. However, White and
Landahllz’13 have developed # prvocedure requiring the method of matched
asymptotic expansions which is used to determine the load distribution
when a gap exists between the wing and elevon in two-dimensional flow.

Both the vortex lattice and Kernel function approaches have enjoyed
certain successes but certainly the vortex lattice has been more exten-
sively used. There are certain problems which, though amenable to vortex
lattice solutions, are more easily handled by the present lifting surface

techniques; namely, that of wing irregularities such as twist, camber,

and arbitrary deformations. Certainly camber and twist have been




addressed in previous efforts, but analyses of moderate "arbitrary"
deformations of a lifting surface have not been found in the literature.

The present work is concerned with the wing-elevon problem for
configurations with moderate wing deformations such as camber, twist,
and general deformations due to high wing loading or distortion of the
surfaces due to aerodynamic heating. Lifting surface theory is employed
with the solution following the procedure established by Purvisla and
Burkhalter, 35_21.15 The loading function over the multiple 1lifting
surface is defined, and the Kernel function is then integrated over the
surfaces. For this work, the gap distances are considered to be small
enough that vortex rollup is assumed negligible.

Comparison is made with experimental data on several general con-
figurations. For the gap case, data was obtained from low speed wind
tunnel tests with gap distance as a primary test variable. Data for
several elevon deflection angles and hinge line locations are shown for
each configuration at numerous angles of attack. Experimental data is
lacking for wing load deformations at subsonic speeds but comparisons
are made with wings which have ¢udu.ute camber anl twist.

Supersonic Tlow

For supersonic flow there are several approaches which address the
problem of predicting loads cn a planar wing. These methods range from

two-dimensional shock ezpansion theory to three-dimensional wing theory

to vortex lattice theory. Some approaches are useful for variably swept

wings while others are only applicable to wings with straignt leading

edges. The basic elements of the major supersonic flow theories will be

‘ summarized in the following paragraphs.
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Shock-expansion theory is two-~dimensionally restricted to attached
shocks but it iz general and can be used for thick and thin 2-D bodies
alike. However, because the results are difficult to express in concise
aualytical form, shock-expansion theory is mainly used for obtaining
numerical solutions for diamond shaped airfoils. If, however, one
assumes a thin wing in steady flow at a small angle of attack; i.e.,
small perturbations; then the approximate relations for weak shocks and
expansions may be used. This thin airfoil theory results in a simple
analytical expression for calculating the pressure coefficient.

Although these two-dimensional theories are valuable, they are not
sufficient to correctly model three-dimensional flow. Two of the first
three-dimensional theories were point source theory and line source
theory. These theories were adapted to thin supersonic airfoils with
straight leading edges and various types of symmetrical crossections.

In each theory the velocity potential for the wing is obtained by
analytically integrating over the forecone from the point in question.
Either subsonic or supersonic leading edges may be handled in this manner
as well as delta wings with supersonic leading and trailing edges. These
theories, however, do not allow for the interaction between the upper

and lower surfaces of the wing which would result from subsonic leading
edges as well as from subsonic wing tips.

Thin wings with straight subsonic leading edges may be handled by

conical flow theory. As the flow properties are constant along rays

emanating from the vertex of the wing the flow is two-dimensional. The

Tschaplygin transformation is used to transform the small perturbation

equation in polar coordinates into the two-dimensional Laplace equation.




Complex variable techniques developed for incompressible flow are then
used to obtain an analytical solution for the pressure coefficients.
This technique has also been extended to wings with straignt supersonic

leading edges and also to wings with straight subsonic and supersonic

leading edges combined.

All of these techniques are basically inadequate in predicting

loads for a deformed wing; a deformed wing in this case meaning moderate
arbitrary deformations which include camber and twist. Most are amenable
to general planform shapes but are usually restricted to straight leading
L and trailing edges and do not include fuselage effects. A more recent

‘ attempt to include curved leading edges was completed by Carlson16 in
which a vortex lattice scheme was used to model the wing planform. Al-
though resulting computations were highly oscillatory, a '"smoothing"
routine introduced by Carlson produced acceptable results for thin planar

17
wings. Another recent formulation of the problem utilizing supersonic

line sources has also produced good results on curved planform shapes
and does not require any post data manipulation.
i The solution technique used in the present research is fundamentally
based on three-dimensional supersonic flow theory as outlined in Refs. 18, i
! 15 and 19, but is modified to account for wing deformations. Potential

! flow is still assumed so that solutions to the potential equations may

be added. The deformed wing is "overlaid" with a doublet paneling sheet
whose strength everywhere is determined through matrix inversion tech-
niques and the doublet solution is then added to the basic three-dimensional
supersonic solution. This is accomplished by subdividing the wing planform

into very small panels over which the pressure is assumed constaut.




6

» Integration is completed over each subpanel in closed form and results

may then be written in summation notation. The vorticity paneling

produces perturbation velocities which account for deformations in the wing

e

surface.
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II. SUSSONIC FLOW=-THEORY

Fundamental Equations

The appropriate equations and solution procedure for the Kernel
function formulation used in the subsonic analysis are outlined in this
section. The equations are well known (Refs. 20 and 21) and the solution
procedure is developed in detail in Ref. 14.

Compressibility is included in the potential equation which is

written as

l Y(x Y ) (X—X )
¢(x,y,2) = = ff © 2% z{1+ = dx_ dy
A (y-yo)2+22 °

/(X—X )2+82(y_y )2+BZZZ
(V] (]

The downwash at an arbitrary point (x,y) in the z=0 plane due to an

infinitesimal area (dx0 dyo) of a lifting surface is

1 AC_(&,n) (x-x )
w(x,y,0) = s /:[ P ; 1+ ° dxo dy0 (1)
! | S (y-y,) V(x-x ) 2482 (y-y )2

where £ and n are dimensionless chordwise and spanwise variables, respec-

tively. These variables are made non-dimensional by the definitions:

& X e

x-x__(y)
£ = —E— n=-* @)

‘ cly) b/2

The functional form of the pressuvre loading coefficient is assumed as

N 1 M
ACP(E,H) = nZO Ezﬁs-mzo Bnu‘sin(2m+1)6

[

£ 3)
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where n = cos 6 and v and M represent an arbitrary number of chordwise
and spanwise control points, respectively. It is readily seen that this
form produces the recuired leading edge square root singularity, satisfies
the Kutta condition at the trailing edge, and has slender wing behavior
at the wing tips. A discussion of the logic behind this assumed form of
the pressure loading is presented in Reference 14.

Over a sufficiently small subpanel of the wing planform, ACp is
essentially constant and may be taken outside the integral of eq. (1).
The resultin; expression may be evaluated in closed form to give

ac_(€,m

bu(x,y) = —p—gﬂ—— [K(x,.y,) -K(x,.y,) ~K(x,y,) +K(x;,y )] (4)

where, as an example, K(xl,yl) is evaluated in the form

(x—xl) + /(x—xl)z + Bz(y—yl)z

K(X ’yl) ==

+ B loge[B(y—yl) + /?%mxl)Z + Bz(y—yl)2 ] (5

The other K's of eq. (4) are evaluated by making the appropriate sub-
stitution of the subscripted variables in eq. (5). Also in eq. (4),
ACp (E,ﬁ) is evaluated at the centroid of the subpanel. The wing and
subpanel afe illustrated in Fig. 1.

For small angles-of-attack, the boundary condition imposed is the

requirement of no flow through the wing; i.e.,

w(x,y) + sin a(x,y) = 0 6)
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Figure 1. Wing and Subpauel Coordinates.
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i The total downwash at any control point due to the entire wing is found
; /
by summing the effect of eacl. subpanel of the surfacc and Eq. (6) becomes

2y aw(x, ,y,) + sin a(x ,y,) = 0 7N
S i i3

where (xi,yj) are the control points, and are located according to a

cosine distribution?

C(yi) i
= + b (- cos T L 17 1,2,...
Xy XLE(yi) (1 - cos N+l) ,i=1,2, N
_b _ 3 .-
Yy =3 (1 - cos M+1) s 3 =1,2,...M (8)

The set of simultaneous, linear equations for the NxM unknown loading
coefficients, Bnm'S, defined by substituting eq. (3) into e€q. (4) and
the result into eq. (7), may now be solved, and the loading at any point

on the wing is defined by Eq. (3)

Loading Function for Wing-Cap-Elevon Configuration

The above analysis is for a wing configuration only. Wnen a control
surface (elevon) is added to the wing, the load distribution will of
course change. Purther changes in this distribution cccur when a gap is
introduced between the wing ani elevon. In the present work, it is assumed

that the elevon span is equal to the wing span, and the elevon hinge

line is perpendicular to the wing centerline. With these stipulations, the

i solution procedure for the basic wing is paralleled except for the loading
function.

First, for the sealed-gap case with a deflected elevon, a two-function
formulation using eq. (3) to describe the pressure distribution is used.

The nondimensional chordwise variable, ¥, of eq. (3) is redefined and is

L L Rty
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considered separately for the wing and elevon. For the wing and elevon,

respectively, it becomes

~ X—

*g ) *¥g )
| i o) R o S s o) ®)
W E E

This geometry is shown in Fig. 2. With these definitions, it is easily
verified that the leading edge singularity is satisfied on both the wing
and elevon, a:d the Kutta condition is met at the elevon trailing edge.
These singularities agree with usual assumed loading function with con-
trol surfaces pointed out by Landahl in Reference 13. At the wing
trailing edge, the Kutta condition is not satisfied, nor is the usual
singularity obtained, but rather a finite value. This loading is used to
allow a closed form solution to the sectional 1lift integral. Error due
to this assumption is considered to be on the order of error due to the
assumption of an infinite loading, while the advantages of a closed form

i solution are considerable. This (chordwise) distribution is shown sche-

matically in Fig. 3s.

.! Whon a gap exists between the wing and elevon, the loading function
over the wing and elevon is defined in order to create the effect of two
wings. The leading edge singularity and Kutta condition must be satis-
fied on each surface. Equation (3) produces this distribution by

redefining the chord-wise variables illustrated in Fig. 2 as

x—xLEW(y) x~xLEE(y)
g ————» &= ——— (10)
cw(y) cE(Y)

for the wing and elevon, respectively. This loading is shown in Fig. 3b.
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Figure 2. Wing Geometry and Aerodynamic Forces.
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Figure 3. Chordwise Loading Functions.
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l After the load distribution has been defined, eq. (7) with eqs. (3)
and (4) 1is used to produce a set of simultaneous, linear equations for
the unknown coefficients for both the wing and elevon. The typical
control point location and corresponding matrix for the unknown coef-

ficients are shown in Fig. 4. The control points are located using eq.

(8) separately for both the wing and elevon. The summation ic performed
over the entire surface of the wing and elevon, and for the control

points on the elevon, the boundary condition becomes
w(x;»y.) + sinfo(x.,y )] =0 (11)
J 13

It should be noted that the loadings for the - ing and elevon are
solved simultaneously, therefore, iteration of the interference between
the surfa ez - -<iminated. The pressure ai uny point on the wing or

elevon is given by eq. (3), with the appropriate definition of &W and

gE (eq. (9) or (10)), and the appropriate values of the Bnm's (wing or
elevon).

Total Aerodynamic Forces and Moments

From the wing-elevon configuration, shown in Fig. 1, tne total lift

is given by
y=b/2 X=X
L= f / AP dx dy (12)
. y=-b/2 X=X o

. S ) . ——
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Separating eq. (12) into the contributions for the wing and e¢levorn, and

using the definition for the pressure coefficient, the above equation

becomes
b/2 X X
TEw TEE
L = qf [/ ac, dx,, +f Ac, de]dy (13)
W E
~b/2 X X
LEw LEE

It 1s convenient to define the sectional 1lift coefficient as
TE
= 4
ce, f ACP dx (14)
LE

Considering the sectional lift for the entire configuration to be

Ccl(yo) = ccy (yo) tcey (yo) (15)
W E
the 1lift becomes
b/2
L=g f ccl(yo) dy (16)
-b/2
where
X
TEw TEE
ce,(y) = f AC, dx + f b, dxg (17)
W E
X X

Combining eqs. (9) and (10), the dimensionless chordwise variable can

be defined by

x-xLEw(y) x-xLEE(y)
RS S R T ) 18

T
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With these definitions, the sectional lift becomes

TE !

W
e, ) = f 7 se, (e g+ / b, (grme de, (19)

0 0

Using eq. (3) for the pressure distribution, the integration of

eq. (19) may be performed as in Reference 15 to give
NW M
ccl(yo) = Z z In Bnm sin(2m+1)6
n=0 m=0
NE M
+ 7 Y 1_B_ sin(2q+1)6 (20)
p=0 q=0 P Pd
where Bnm represents the pressure loading coefficients obtained from

eq. (11) corresponding to the wing loading, and qu represents the

coefficients of the elevon loading. Also, in eq. (20) for the wing

m = 1 .
Lg=y+ By 8 tysin -1 (21)
0 4 TE, TE, 2 TE,,
and
3/2
_ 1 }2n-1 _ n-2 ) )
In n+1[ 2 In-]_ gTEw<gTEw - gTEw > ] ’ n—l,Z 3o e .Nw (22)

and for the elevon
.
I, = 2 (23)

and

2p-1
I = I , =1,2,...N
p  2(p+l) p-1 P E (24)

Note that for the gap case, gTE = 1, and eqs. (21) and (22) reduce to
W
eqs. (23) and (24) with n instead of p.

-
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Returning to eq. (16) and using the dimensionless spanwise variable,

n, of eq. (2), the total lift is
1

L=gq f ce (M) dn (25)

-1
With the definition of the lift coefficient, and for a symmetric wing,

eq. (25) becomes
1

¢, - %f ce, () dn (26)
0

l Similar manipulation of the force equations leads to the total moment

] about the root chord leading edge (of the wing) as

1
_2 2
Cy = = c?c_(n) dn (27)
m
Sc
0

2 ) with the sectional pitching moment coefficient given by

I cle (M) = x ¥ E L6 sin(2mtl)6
" LEy n:o mey ©E
Ny
’ CWT “ZO ménlu+1 Bnm sin(2mtl) e
N'—“a M
¥p pzo qZO L) B SIn(2aHLy
NE "
+cp pZO qEO T qu sin(2q+1)9 28

where the first two terms are scen to be the moment due to the wing, and

the last two are the moment due to the elevon.

S TR N W e e

Lo R | ' L AR, . AN, A
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For the wing alone, the integration of the lift and moment equations
is performed analytically in closed form. However, because of the
discontinuity resulting from the addition of an elevon, eqs. (26) and
(27) must be integrated numerically when a gap exists or the elevon is
deflected.

In defining the lift and moment coefficients for the entire configur-
ation, the reference area, S, is the total surface area of the wing and
elevon combined, excluding the gap area. Similarly, the reference length
in the moment coefficient equation is the mean aerodynamic chord, c, of
the wing and elevon, without ccnsidering gap distance.

Elevon Hinge Moments

When an elevon is included in the configuration, elevon hinge moments
are important in determining control forces for the vehicle. For a
straight elevon leading edge with the hinge line located at the leading

edge, the total elevon hinge moment is

1

=qbf c’c_ (mdn (29)

" |
-1
where the sectional hinge moment coefficient is defined as
1
2 2 .
= d

c cmH(n) CE'/ACPE(EE,T\)&E g (30)

0

Writing eq. (29) in terms of the moment coefficient and for a symmetric

wing, it becomes
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Considering both the wing and elevon contributions of eq. (27) separately,

I it is noted that eq. (30) is the elevon moment about the elevon leading

edge, the solution of which is given by the last term of eq. (28), or

c‘c. =c¢ I B sin(2q+1)6 32)
my E p=0 q=0 p+l pq

Substituting eq. (32) into eq. {31), the integration may be evaluated in

closed form (Reference 14) to obtain

) 2¢ ﬂ NE cRE—cTE NE M
" S5C ‘ PZO B —;;E;—_ PEO qzo ®pa p1 % oY
where
m/2
Gq = f sin 28 sin(2q+1)6 d0 (34)

0

For the elevon hinge moments, the reference area, $ is the total

. E’
area of the elevon. Also, thie reference length, EE’ is the mean aero-

I dynamic chord of the elevon.

- Thus far, the analysi: has bern limiied to a hinge line at the elevon

leading edge. If the elevon lift is also .nown, the 1lift z.d moment

produce a couple at the elevon leading edye. 7The moment about any chord-

wise station -may be found by summiig moments at that point. This gives

(35)

= +
Mo " Me T bLe Mo
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where X1, is the chordwise location of the hinge line measured from the
l elevon leading edge. Dividing by ¢ SEEE gives the equation in coefficient
form
x-
’ Cy =¢y+¢ :!‘»I: (36)
HL Ec

| where CH is given by eqs. (33) and (34).

The total 1lift for the elevon is

1
C =3~fcc(n)d~ (37)
L, TS .

0

with the sectional lift of the elevon given by

1

= A &
ce, () = ¢, / Cp (B s MaE (38)
E E
0

It is readily seen that this is the second integral in eq. (19) and

the solution is given by the last term of eq. (20); thus
) NE M
; cc, (M= ] ] 1 B, Sin(2a+1)0 (39)
: . E p=0 q=0 d
where Ip is given by eqs. (23) and (24).

For the elevon, the lift may be obtained in closed form. Substi-

Tt Tl L

tuting eq. (39) into eq. (37), and integrating gives

Ng

i
C = —— B 1 (40)
LE ZSE p=0 p0 p

where, in the loading coefficients qu, only the ¢q=0 term appears.

Thus, using eqs. (40) and (33) in eq. (36), the elevon hinge moment

’ about the hinge line is obtained in closed form. The only requirement
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for the analysis is that the hinge line be perpendicular to the wing
root chord.

Non-Planar Wings

Lifting surfaces which do not lie entirely in the x-y plane present
a different view to the flow field than the planar wing previously con-
sidered. To analyze non-planar wings, it is necessary to consider the
angle that each control point and each grid element makes with the x-y
plane. Non-planar effects of primary interest include wing twist, cam-
bered airfoils, and arbitrary chordwise and spanwise deformations.

For the case of wiig twist, at any given spanwise location on the
wing, the chord line lies in a plane that differs from the initial x-y

plane by the twist angle, &..,» at that station. This angle may be in-

W

cluded in the boundary condition such that eq. (6) becomes:

w(xi,yj) + sin [a(xi,yj) + o (xi,yj)] =0 (41)

The boundary condition for the elevon, eq. (11), may be rewritten in a
similar manner.

For cambered or arbitrarily deformed airfoils, the chord line may
be replaced by the mean ca.l.ev line. The downwash produced by each grid
element is proportional to the angle which that element makes with the

x-axis, or
=/§\
Aw(xi,yj) -W(Xi,yj)cosfxi (42)

where ai is the angle relative to the x—axis and is given by

= tan~! (392
a, = tan (dx1x (43)
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This is the velccity compeaent in the z-c¢irection; however, each control
point also has a z-cnordinate. The boun-ary conditicn i1s for no flow
through the wing, or that the normal component of velocity to the wing
be zero. The angle that thc¢ control point makes with the x-axis is

given by

o = tan”! (9,-2—,)' (44)
Thus the component of velocity normal to the wing is

Aw(xi,yj) = Aw(xi,yj)cosuC (45)

It should be noted that the boundary condition of the deformed wing is
satisfied on the x-axis, although the coordinate of the mean line lies
off the axis; however, this is equivalent to the planar wing approxi-
mation essential to thin airfoil theory. The actual normalwash is found

by combining equations (42) and (45)
)y = LTy )
Aw(xi,yj) Aw(xi,yj)cos( i YC) (46)

By defining a function z(x) many variations and amplitudes .f camber
and wing deformation in the chordwise direction may be obtained. Com-
binations of twist and camber or deformation may also be analyzed. How-
ever, the condition of no flow separation still applies at all points.

Interference. Effects

In the present analysis, interference effects, such as fuselage per-
turbations and leading edge suction, are also included. An infinite
line doublet is used to simulate fuselage interference effects on the

induced velocity over the wing. The potential equation for the line
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doublet may be differentiated to determine the veloucity component normal

to the plane of the wing. To calculate the lift and moment of a fuselage
in the presence of a wing, un image wing inside the fuselage is emploved.
The sectional characteristics of the actual wing are integrated over the
image wing span to determine the lift and moment. Both of these principles
are well known and the theoretical development can be found in Reference
22.

Leading edge suction, which makes a significant contribution to the
lift of highly swept wings at large angles of attack, has also been
incorporated into the preseat theory. Purvis (Ref. 23) has shown that,
for an assumed pressure distribution in the form of eq. (3), and for an
elliptic spanwise lift distribution, a general, closed form solution for

the leading edge suction is

c?
’ CcOosit :
i - 87 47
sinu ;%% cosy) (47)

L L cosh

VLE P
where CL represents the potential flow lift coefficient, which is given
p
by eq. (26). Also, from Reference 23, the moment may be written as

2.212072 ¢, c, b/2
S N - B ‘./f AT TSI .
C siny - —£ cosu x, [nvl-ne + sin *(n)]dy
MVLE c b cosh AR LE
0 48)

Using the definition of n in eq. (2) gives

’ 1
1.
10603CL CL 1
C = —:——-———B sino - :—R cost/ﬁ x, [/1-17 + sin (M) 1d (49)
MVLE ¢ cosh AR LE

0

For a constant leading edge sweep angle, this integral may be evaluated

in closed form. The coordinate of the leading edge is given by

X g = 1 cosh




therefore, eq. (44) becomes

1.106036C c, 1
C‘rl\ = - P (22‘5‘2)[‘(;1”1 - "—\l})i cos«u]/[nzm +n sin '(n) )dy
*VLE c T a .
{50
0 )
Integration produces
C
0.65151 ) L tanh
CMV = [CL sini - m COSJ] (COSA) (5])
LE c p

Since the current gap analysis assumes small gaps such that there is
no vortex rollup, interference effects will be confined to the fuselage
and leading edge suction. These correction terms are necessary to allow
a comparison between theory and experiment in many instances; therefore,
by including them, a more versatile analysis is obtained.

Order of Polynomials

Before proceeding, comments on the effect of polynomial order on
the solution is in order. The unknown constants, Bnm in eq. (3) are
really coefficients for the various terms in the polynomial describing the
pressure load.:» on th» wing. Tt has been suggested that if th. polvnomial
order is inc-reased to a large number of terms (i.e., > 50) that the sec-

'in the spanwise

tional coefficients such as cc, will tend to ''oscillate'
direction. For the formulation used in the present analysis, no oscil-
lations are observable at least up to 30 terms in the egquation. However,
oscillations do indeed occur if terms on the order of 80 or more are
used in the pressure loading. It does not appear that this is due to
"numerical" instability as would be the case if numerical integration

were used, but rather due to overkill. That is, the pressure loading

function is rather general and for most wings only a few terus (< 20) are
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required for a solution If more terms are used, it 1s analogous to
fitting a 50th degree polynomial to a linear curve; oscillations are the

inevitable results.




III. EXPERIMENTAL MODEL AND TESTS - SUBSONIC

Model

To verify the gap effects and subsequent elevon loading, an exper-
imental mode%4shown in Fig. 5 was fabricated and tested in a low speed
wind tunnel. The baseline configuration consisted of a thin, low-
aspect ratio, cropped delta wing with rectangular elevons. These
surfaces were symmetrical about both the chord line and the fuselage
centerline. The fuselage was included to facilitate mounting of the
hinge moment balance mechanism. An ogive nosecone and tailcone were
also included. The fuselage and wing tips were designed to allow for a
two-inch translation in the elevon mounting position, which could be used
to vary the gap distance and/or the elevon hinge line location. The

model was floor-mounted to an external six-component pyramidal balance.

Test Procedures

The model was tested at a dynamic pressure of 3.5 inches of water
corresponding to a speed of approximately 126 feet per second and a
Reynolds number of 0.76 million per foot.

Data was obtained for an angle of attack range from -19 to +5
degrees in 2-desree increments. The negative range was used to minimize
strut interfereunce effects on the elevons. Several elevon deflection
angles (0° to 20°), gap distances (0 to 75% cE) and hinge line locations

(0 to 507 cE) were tested.
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IV. RESULTS ~ SUBSONIC FLOW

Results for a wing configuration are compared to other well known
theories in Figs. 6 and 7. Agreemenc is good for all cases considered.

In obtaining results using the present theory, the wing subpanel mesh of
constant loading was 45 by 45 (cho:dwise by spanwise), and the control
point grid was 4 by 4. The total CPU time required was 45 seconds on an
IBM 3031 compared to 1 minute for the method of Lan on the Honeywell
635.8 Storage requirements for the present method are negligible on a
large machine, This mesh size may be rediced such that total CPU time
is reduced to 20 seconds, with a change in accuracy of approximately 5
percent.

A comparison of theory and experiment for the 'base" configuration of
the wing-fuselage model is presented in Fig. 8. Both linear theory and
leading edge suction are included. The importance of the nonlinearity E
introduced by leading edge suction in the high angle of attack region is |
easily realized rrom this figure.

The theoretical pressure distribution for a deflected elevon is com-
pared with experimental data (from Ref. 25) in Fig. 3. From this figure,
it is seen that the assumed functional form for the chordwise pressu.e
distribution for the sealed-gap case represents an adequate model of the
actual flow: Total lift and hinge moments are presented in Fig. 10
where agreement is good, particularly in the low angle of attack regime.

The analysis developed for the general case of deformed wings,

elevons, gap, and fuselage is used to predict the lift, pitching moment,

30
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l e = Lan's theory (Ref. 8)

} » 6.0 = Present theory

Figure 6. Comparison oi Two Theories for a
Swept and Tapered Wing of Aspect
Ratio 2.828. 5.
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———— Present Theory

— — — DeJarnette (Ref. 9)

Figure 7. Comparison of Two Theories for a Rectangular
Wing of Aspect Ratio 2.
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0.2 r---—- -—— Linear theory

Leading edge suction

0.0 P o Experiment (Ref. 24)

a (degrees)

-0.2 1 N S | | 1 —
=20 -16 ~-12 -8 -4 0 4
o (degrees)

Figure 8. Leading Edge Suction on a Highly Swept
Cropped Delta Wing with a Fuselage.
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Figure 9.

Elevon at n = 0.5.
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Figure 10. Lift and Hinge Moments for a

Wing-Elevon Configuration.
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and hinge moment slopes for the model tested in the low speed tunnel and
is shown as a function of gap distance in Fig. 11.

Certainly the most interesting trend with respect to the gap is that,
for all cases, hinge moments increase slightly as gap distance increases.
It is also noted from Fig. 11 that the coefficient slopes vary more
noticeably with changes in elevon deflection while the changes with angle
of attack are essentially negligible. Figure 12 illustrates the theoret-
ical spanwise pressure distribution over the wing and elevon for the
present cropped delta wing configuration. This figure confirms the
predicted increase in the loading over the elevon, and shows the slight
loading change with respect to angle of attack. This loading form is in
agreement with the two-dimensional results obtained by White, et gl,lz as
well as the present experimental data. 1In Fig. 13, the hinge moments are
presented for several hinge line locations on the elevon. It is seen
here that there is a chordwise point, in this case between 15 and 20 per- |
cent of the elevon mean aerodynamic chord, where the hinge moments are %I
independent of gap distance. It is noted that this point does not coin-
cide with CH5= 0, which gi'~s the elevon a-rodynam’c center. This aspect
could be significaut in *he design of vari-ble geometry wings where gap
distances are subject to change. Also the minimum value of the hinge

moment, which corresponds to minimum control forces, occurs for the sealed-

gap case.

The slopes of the pitching moments curves illustrated in Fig. 11 are

seen to be essentially constant in nature. Since the moment is referenced

to a fixed point on the wing, the increase in the moment arm with increas-

ing gap coupled with increased elevon loading might tend to suggest an
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Figure 11. Aerodynamic Characteristics for a
Gapped Configuration.
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Distribution.
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incrcase in the noment. However, from Fig. 12 it can be seen that the
change in pressure distributicn mere than offsets these factors. Yet, e
as the gap becom:s large, the theoretical pressure distribution must -
approach that of two separate wings, without interference. The moment
referred to a fixed point on the wing must become infinitely large as
the gap distance approaches infinity,

For large gaps, it was found experimentally (Figs. 14 and 15) that
there is a considerable increase in the total lift and moment for an
elevon deflection of -20°. The decrease in the forces becomes larger
with increasing gap distance. However, elevon hinge moments did not
reflect this trend, indicating that it is due more to the gap rather than
to flow separation over the elevon. In any case, it is apparently a
viscous phenomena and cannot be modeled properly using potential flow
techniques.

The experimental data for different hinge lines is presented in
Figs. 16 and 17. Theoretically, there are no changes in the total forces
and moments with a change in the hinge line. This result also appeared
in the experimental data despite the fact that, for a deflected elevon, the
elevon leading edge no longer lies in the plane of the wing. From the
data in Fig. 16, it is seen that the hinge moments at XHL/EE = .254, or
approximately the quarter chord of the elevon, are quite small and show
little variation with angle-of-attack or elevon deflection. This in-
dicates that this point is near the aerodynamic center for the elevon.

However, the slopes change with a change in gap distance, thus the aero- ;

dynamic center must also be gap dependent, as previously shown on Fig. 13.
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Results for uarbitrarily deformed airfoils are difficult to find in
the literature; therefore, perhaps the best basis for comparison is two-
dimensional thin airfoil theorwv. Table 1 illustrates theoretical results

for the two arbitrary nean lines shown. The present theory, extended

e

to two-dimensional results and thin airfoil theory show good agreement.

For cambered airfoils, experimental data may be obtained from Ref. 26.
Results are presented for the NACA 747A315 laminar flow airfoil in Fig. 18.
The current theory predicts experimental data very well. Again, the thin
airfoil and present theory are closely matched. This result should be
expected since, for two-dimensional flow, the present theory would become
thin airfoil theory as the limit of the wing subpanel areas with a constant
ACP approached zero.

For a finite wing, Fig. 19 compares theoretical predictions with
experimental data (Ref. 27) ai several Mach numbers for a wing that is both

cambercd (™C\ 5-1.0 mear « .mber !'ne) and twisted. It should be noted

* that the ezpcrimertal model was tapered and (!e maximum camber varied with
i the spanwise <cordinate. In the theoreticel model the wing was replaced
4 by the mean camber line at each 20 percent of fhe :pan and this distribu-
tion remained constant for that section. Also, a linear spanwise
distribution of twist was assumed, while there was a slight variation

from this experimentally. Nontheless, agreement of theory and experiment

is very good-over the entire experimental Mach number range..
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V. CONCLUSIONS - SUBAONIC FLOW

From the preceeding results, it is seen that the present theory
produces good results in the inviscid flow regime. Configurations
ranging from a basic wing to varying combinations of wings, elevons, gap,
and fuselage may be modeled as well as moderate wing and/or elevon defor-
mations. Since compressibility effects are included, reasonable results
up to large (subsonic) Mach numbers are generally obtained.

For the finite gap case, the theory provides an excellent means for
obtaining early design characteristics in a short time for small angles-
of-attack and elevon deflections. However, it is shown that for large
elevon deflections there was a considerable decrease in total lift and
moment characteristics when a large gap was present. This appears to be

a viscous phenomena and therefore cannot be modeled with potential flow

techniques. Vortex rollup, which must be included for very large gaps,
has also been neglected in the present theory. Results for cambered,
twisted, and arbitrarily deformed wings may also be obtained easily with
the present theory. Results are good as long as the requirements of
potential flow are met on the surface.

Several advantages of the current method occur as a consequence of

the assumption of a constant ACp over a sufficiently small subpanel of the
wing. The wing can be divided into many subsections, yet only a relative-
ly small matrix must be inverted to obtain the load distribution. This

assumption also allows Acp to be taken outside the downwash integral and

e r——— e 2

vields a closerd form solution to the equation. As a result, this method
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requires considerably smaller computational times and storage space than
many methods, such as vortex lattice, since they usually require a

matrix equivalent in size to the number of wing subpanels.




VL. SUPERSONIC T'LOW - THEORY

Fundamental Equations

The theoretical approach for the supersonic Mach number regime is a

potential flow formulation in which solutions are superimposed. The
source solution introduced by Evvard?8 forms the basis of 3-D supersonic
1 theory used in the present analysis and vorticity paneling is added to
account for wing deformations. The vorticity paneling, as previously
introduced, is actually a continuously distributed doublet panel which

satisfies the supersonic potential equation

]dxody (52)
/(x—xo)2—52(y-yo)2—8222j ©

Y(x ¥ ) (x-x )
by, = 5= /] e — z[ :
S0 (y—yo) +z

As for subsonic flow, the vorticity distribution Y(xo,y ) may be replaced
o

by the pressure loading coefficient %Acp(xo,yo). The downwash equation
is obtained by differentiation in the standard manner and when evaluated

in the z=0 plane (planar flow) becomes

1 AC (x ,y ) (x-x )
wix,y) = = [ -2 o 2 dx dy (53)
TS -y )? LYGR))FRTGy )7 ) °

(o]

where the area So is that contained on the wing surface in the upstream

; running Mach cone emanating from the field point (x,y). Although the
vorticity paneling is formulated for planar flow, it may be used to
account for non-planar velocity components if the slope of the nonplanar

surface 1is properly taken into account. A more detailed discussion of

————

how this is done is explained later.
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The assumed pressure loading cousists of the basic three-dimensional
supersonic flow term plus the perturtation term from the vorticity panel-

ing and is then written as

N M
= - N m nn§
ACp(xo,yo) P(xo,yo)sin(u+90) + P(xo,yo) nzo m_:o BL N cos* (54)

The first expression on the right-hand side is the 3-D loading term
modified to account for local wing deformations and is valid for both
subsonic and supersonic leading edges. The second term uses the 3-D
pressure functions P(xo,yo)15 as a weighting function which, when multi-
plied by the unknown coefficient BL’ and the series n" cos Egé accounts
for small deformations in the wing surface in the upstream Mach cone from
the point (x,y). The order of the terms in the second expression seldom
exceeds 3 or 4 and for planar wings, the entire second term is unnecessary.
Increasing the polynomial order for larger wing deformations or higher
angles of attack does not seem to provide better agreement with experi-
mental data.

The form of the assumed pressure lcading term to account for per-
turbation velocities was chosen as a polynomial in the spanwise direction
and a trigometric or Fourier series type function in the chordwise
direction. No strong justification for these assumptions can be given
except that 'in the spanwise direction the 3-D loading term should produce
acceptable results, even for deformed wings, and corrections, which the
polynomial provides, should be small. Subsequent good agreement with ;i
experimental data seem to justify this assumption. 1In the chordwise
direction where more severe changes occur in the pressure loading, a

trigometric correction, which is somewhat more general than the
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polynomial, was chosen with subsequent good agreement with experimental
data.

As in subsonic flow, the ACP term is removed from the integral in
eq. (53) and the resultant expression is integrated in closed form over
a small subpanel. Results of this integration over various shaped
subelements is presented in Ref. 15.

It is convenient to define the value of this integral as BAK so that

the total downwash at a point (x,y) becomes

I
winy) = 10 e G 1, 6o (55)

i=1 am
where I is the total number of subpanels in the region (cone) of integra-
tion. The boundary condition is
w(x,y) + sin (a+9c) =0 (56)
where Sc is the local deformation angle at a control point. Rearranging

and combining equations (54), (55) and (56) yields

I
Y (K, [P(x_,y ) sin (a+6 )] +
i=1 i 0 o] o] 1
I __ N M . .
R Ox o PGy ) Y Y B n cos —25].
i=1 . ° =G m=0 1
= - 4 in(o40 ) (57)
=- s .

where L = n + mN.

Body perturbation effects on the wing loading are accounted for by
assuming that the body is cylindrically shaped. The cylinder is gen-
erated with an infinite line doublet whose axis is in the z-direction

perpendicular to the wing planform. The results of adding the body to the
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analysis simpiy adds another term to the right-hand side of eq. (57) which,

after a little manipulation, lLecomes

4ma’ sina
- 58
B(a+n)? (58)
where a is the nondimensiocnal bodv radius defined by a = rb/(b/Z).
» Equations (57) and (58) are combined and rearranged as
I N M ‘
- = g
) (AK)i[P(XO;YO) ) B, T cos Eiéli =
i=1 1=0 m=0
rmalsd
- ‘%‘ sin (a+0) + 4ma’sina
% B(atn)®
a
1l I _ _
+ I (@K, [P(x ,¥ ) sin(o+0 )], (59)
. i o' o o i
i=1
The above equation represents a set of N simultareous linear alge-
braic equations and is conveniently arranged in matri. form for a

Gaussian reduction solution for the unknown coefficients BL' Once the
unknown coefficients are determined, the localized loading is obtained
from equation (54).

Lift and Pitching Moment for Wing Elevon Combinations

In the preceding section, the basic equations were presented for

finding the resulting pressure distribution on a wing or elevon in super-
sonic flow. For the wing alone, these equations may be applied directly
since there is no upstream influence due to the elevon. After the

pressure loading coefficients in eq. (54) are determined, the pressure

coefficient may be computed at any point on the wing surface and appro-

priate subsequent integration produces the lift.
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For the elevon, a similar procedure is followed with the exception
that the elevon is flying in the wake of the wing and therefore the down-

wash produced by the wing and the elevon must be considered. The mechanism

used to compute this downwash 1s discussed in another section.
The lift for the wing-elevon configuration is the sum of that pro-
duced by the wing and that produced by the elevon. It is convenient to

define nondimensional churdwise and spanwise variables for the wing as

oy
]

(x-xLE)/Cw (60)
and

y/(b/2) (61)

=
]

For the elevon, using the same coordinatre system, these definitions

become

&g = (x-CR-s)/CE (62)
and

ng = y/(b/2) (63)

With these definitions, integration of the pressure distribution

over the wing for the lift becomes

=1 £=1
= b
CL 28 (8Cp €, 4 )dn,
w . w
n=-1 £ =0
and for the elevon
=l =1
c, = b (AC, C_ d&_)dn
L 2S P E E E
E E
n=- 1 €E=0
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It is convenient to define sectional properties as

£ =1
w
(CCR)W = Cw / ACPW d&w (66)
g0
and
EE=1
( ) =¢C AcC dg (67)
e CE P, E
5E=0

from which we get the total lift coefficient

n=1

/ [(ccsz’)w + (CC,Q,)E]dn (68)
n=0

(@]
1]
wn|o

Because of the nature of the pressure loading function, equation (54),
equations (66), (67) and (68) must be integrated numerically.
A similar analysis leads to the moment equation about the y axis

(see Figs. 1 and 2) as

M = + AP
. /APW X dAw / g X dAE (69)

Aw AE

For the first integral in eq. (69), we note that

X = xLE + c‘:Cw (70)

and

= b
da, = dxdy = (C_dE) (3 dn) (71)
and

y tan A = % n tanf

=
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Using these definitions, the first of these integrals over the wing can

be written as

n=1 1 1
= b 2
I. = 2
1 gqb / {zntanA[»Cw / ACPwdgw] +C, fAcngwdgw}dn (73)
n=0 0 0
In a similar manner, the second of these integrals become
=1 1 1
= b +€ Ac_ dg ] +cC? A d¢_}d
I, =1 /{(cR )[CE/ cp d€.] CE/ Cp £pdE }dn (74)
w E E
n=0 0 0

The moment coefficient about the y axis is defined as

Cy = My/(ch)
y
so that
N=1 1
¢, =2 | {2 ntanfi(ce ) +c 2| ac € at ]
M - 2 27w w P 'w w
y Sc w
n=0 0
1
2
+ 1(Cy + E)(ccg)E +Cp f AcpEéEdiE]}dn (75)
0

In order to evaluate eqs. (66), (67), (68), and (75), we must first
determine the constants, BL in eq. (54) for both the wing and elevon.
Since the elevon soluticn cannot affect the wing solution (zone of silence),
then the wing loading is solved independently of any elevon considerations
through a Gaussian reduction of eq. (59).

For the elevon solution, we must consider the downwash produced by

that portionof the wing in the forecone of some arbitrary point on the




GER W S e — @—

62

elevon. This downwash from the wing on the elevon will enter the elevon
solution through an additional term in the boundary conditions. That
is, for the elevon

% AK) , [Ac, ((x ,¥ )] '—ﬂ[ + sin(o+d)] (76)

( K)i p oY’y g ¥

i=1 E

where v, is the downwash pronduced by the wing at a particular control

point on the elevon. Evaluation of v is considered in the next section.

Wing Downwash on Elevon

To evaluate the downwash from the wing on the elevon, a direct
approach was first considered. That is, integration was to be carried
out over the forecone from a point on the elevon surface. However, because
of the gap between wing and elevon, this did not seem to be a feasible
approach, especially in light of its complexity. Thus another approach was
considered and used.

Since the wing solution is completed first, sectional properties on
the wing may be computed at any spanwise location. Thus the wing is
divided into equally spaced "strips" along the span and the sectional lift
is computed for each strip. It is assumed that a horseshoe vortex is
attached to each strip in a lattice manner whose strength is determined by
the sectional 1ift coefficient. That is, from the Kutta-Joukowski theorem,

the 1lift per unit span for some ith section is
A = ' =
(BL/8m), = pVI} = 2qT, a7

where

' =
Fi Vl"i
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Placement of these vortices are shown in Fig. 20. Note that in the
figure, the bound portions are shown attached to the quarter chord and
the trailing legs trail bchind the wing to infinity.

If the wing is symmetrically loaded, the 1lift may be written as

1
L =gb f (ccl)w dn, (78)
0

so that for a strip
2
= d
AL qb f (CCQ)w nw
M

Dividing by An and equating to eq. (77) yields

2
- (L
ry = G [ (ccp) dn 1.

If it is assumcd tihat over th. strip the term cc, is constant, then the
integration may be completed in closed form.

At the junction between anv two strips, the resulting trailing fila-
ment strength is the difference between adjacent filaments and may be

written as

1"Ri =Ty Ty = (eepdy — leepdiy (79)

The starting point of these filaments is assumed to be the wing
trailing edge (for lack of a better assumption). Fortunately, the down-

wash induced from all trailing filaments is small in comparison to the
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free stream components and thus an error in the starting point of the

filament does not significantly influence the final elevon loading.
Obviously, though, the filaments must start somewhere on the wing. From
From a planform view of the wing~elevon trailing filament configuration,
it may be shown that if a particular field point (x,y,z) is in the region

of influence of a particular filament starting at (XF’yF)’ then

X > (XF"'BIyT’rl) (80)

where r® = y? + z%2. That is, if eq. (80) is satisfied, then the field

point (x,y,z) '"feels'" the downwash from the trailing filament (XF’yF)'

To compute the velocity induced at some field point (x,y,z), the
Biot-Savart Law is used as an approximation. Although this theorem is
actually only valid for subsonic incompressible flow, it will be suf-

ficient for the present analysis if proper account is taken for the

region of influence (zone of silence).
In vector form, the Biot-Savart relation governing the velocity

induced at some point by a vortex filament is

V(x,y,2z) = - Z—ﬂfix—ad% (81)
r

In this expression, r is the vector from the field point to an

y : arbitrary point on the filament, d? is a vectored differential length
along the filament, r is the magnitude of the v..tor r, and I is the

filament strength. Referring to Fig. 21, these quantities may be

written as

dr = (4 cost, + k sinf)d? (82)

~ . - - — -
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and

T = (xr—x+L cos@r)i + (y;.-y)j + (LosinGI. - 2)k (83)

Equations (82) and (83) are introduced into eq. (81) so that the

integrals for the three velocity components are

L=L
[o]
T .
V.= " am 4/' (yls1n6F/Dm)dQ (84)
=0
=L
o
T .
Vy = Z"E f ((xlSIneT + z Coser)/Dm)dz
=0
and
=T, b
o
-
v <o f (v, coser/Dm)dﬁ
=0
‘ where
ri ST yp Ty
G
H l A= 2xl cosﬁr -2z sinﬁr
L 2 2 2
b =
l B (xl + yl + z%)
' D =(L 2+ AL +13)3/2
m o] u
and
(4B-A°, ~Z+AL +B /B
o] [o]

| - e - .
L R .
- - .
o
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These integrals may be evaluated in clesed form wich the results

vx = —F(ylsinGF)I/(Aﬂ) (92)

Vy = F(xlsiner + z cosOr)I/(4ﬂ) (93)
and

v, = T(ylcoser)I/(Aﬂ) (94)

The induced velocity from these filaments on the elevon is of
primary concern and more specifically the velocity induced normal to the

elevon. In vector form, a unit normal to the elevon is

n=-i sind+k cosé$ (95)
so that
V = Ven = - V sind-V cosb (96)
n X z
or
Vn = -Fle[cos(8F+6)]/\Aﬂ) (97)

Wing Trailing Edge Blocki:.p; of Elevon

To complete the theoretical analysis, the wing thickness and blunt
wing trailing edge and the subsequent effect on the elevon loading must
be considered in addition to the gap between the wing trailing edge and
the elevon leading edge. The configuration being used in this analvsis
is shown in Figure 22. The flow just aft of the blunt wing trailing
edge is highly turbulent as expected and details describing the sub-
sequent flow field is fundamentally grounded in solutions of the Navier
Stokes equations. The implication then is that viscous effects domine*
the solution as was suggcsted in Ref.L However, this conclusion is

not necessarily true. It is clearly recognized that viscous eftects
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immediately behind the wing trailing edge are very important, but it is
believed that the dominant effects over most of the elevon can be pre-
dicted by potential flow methods. Justification of this conclusion is
presented in a later section.

As depicted in Fig. 22, the flow is assumed to be tangent to the
surface of the aft portion of the wing for all angles of attack. The
streamlines thus emanating from the upper and lower aft wing surface
impinge on the elevon surface as shown in 7ig. 22, forming a "blanked out"
region bounded by the blunt wing trailing edge, the upper and lower
streamlines and a section of the elevon chord line. 1In this blanked
region, details of the flow field are not well known. Thus for purposes
of this analysis, it is assumed that this wake pressure coefficient is
zero such that essentially free stream conditions exist.

From Fig. 22 the location of the aft impingement point is

X = (¢ + HOR o R + (98)

and the forward location is

o (XH-LR)tnn + L,’/f
X = Co+ JHORO TR (99)
tan + tan

where OT is the poslitive surface slope of the att portion of the wing.
That is, for the schematic in F .22, - bs about J.0% and ' is about
-10".

Equations (98) and (99) are valid tor * - 0.0. [If the elevon deflec-

tion angle is positive, then the forward location is determined from

eq. (98) and the aft location from eq. (99). It is obvious from Fig. 22

|
!
j
i




71
that there are elevon angles where the leading edge of the elevon lies
entirely within the wake region with some portion of the aft section out-
side the wake. Also, for very small elevon deflection angles, the entire
elevon is immersed in the wing wake and thus is completely unloaded.

In order to justify the use of eqs. (98) and (99) to form a blanked-
out region (Newtonian approach) a wind tunnel experiment was designed to
study this flow field. A two-dimensional model consisting of a wing with
a blunt trailing edge and a diamond shaped elevon was constructed (see
Fig. 22) and tested at a Mach number of 1.94 in a 4" by 4" test section.
The total pressure was about 30 psia with a freestream unit Reynolds
number of 1.6 x 10°. Selected schlieren photographs of the results of
these tests are shown in Fig. 23. In the upper left where o = 0.0° and
§ = 0.0°, the elevon lies entirelv within the wake of the wing as is
clearly seen. The important thing to note here, though, is the well de~-

fined streamline emanating from the top surface of the wing and impinging

on the elevon boundary laver near the apex of the elevon midclord. In
the upper right where ¢ = 0.07 and ' = -4.07, the leading enge of the
elevon is about 4° outside the wing wake region but apparently still

inside the wing boundary laver.  The att impingement point on the apper
elevon surface is still clearly ~isible bur the torward point cannot be

clearly located.

In the lower left, where = -4.14 ang = 4.0, the att impingement
point is located easily while the ¢levon leading edge remains submeryved in
the wing wake. In the lower right where = -4.14° and & = -10.0", the
results are inconclusive. The overall results of these tests indicate
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that some sort of blanking region is formed which is not totally inde-
pendent of angle of attack and is more strongly dependent on the elevon
deflection angle than that predicted by eqs. (98) and (99). Nevertheless,

these equations do provide "bounds'" for the mathematical analysis and, as

will be shown later, provide good agreement with experimental data.




VII. SUPERSONIC FLOW - RESULTS

Comparison with experimental data of the theoretical analysis as
previously presented is divided into two major categories: (1) planar
wings and (2) deformed wings. In many cases, the planform shapes chosen
were dictated by available experimental data. In some cases, experimental
data was available for both deformed and undeformed wings with the same

planform shape. Four of the planform shapes analyzed are shown in Fig. 24.

Planar Wings

Results of the pressure loading and sectional lift and pitching
moment for three of these configurations are shown in Figs. 25-30 for
selected Mach numbers and low angles of attack. Mare complete data summary
results for these configurations are presented in Appendix A. [n these
figures the theoretical solution for the pressure loading is bhasic three-
dimensional supersonic theory as presented in Refs. 15 and 18. No
vorticity paneling is required. The double summation terms in eq. (54) are
omitted and only the P(xo,yo) sin (1) term is used Lo compute the pressure.

In most cases, the sectional normal forces agrec¢ well with the exper-
imental data especially on the inboard sections ot the wings. 1Tt is
observed that the worst agreement is near the wing tips as one would
expect. This deviation at the tips 1s not as detrimental as might first
appear since most of the configuration loading is concentrated on the

inboard sections.
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The sectional moment coefficients about the y-axis shows the same
kind of agreement as does the normal forces. In each case the dis-
crepancies are not severe and the location of the sectional aerodynamic
center is predicted quite well.

The experimental data for these plots (including those in Appendix
A) were obtained from Refs. 29 and 30 and was integrated numerically to
obtain the sectional normal forces and pitching moments. Integration to
produce the normal forces agreed quite well with that tabulated in the
original reports; however, the sectional pitching moment data as pub-
lished in Refs. 29 and 30 was not reproducible by numerical means. Con-
sequently, these experimental data as presented in Figs. 25-30 (and
Appendix A) for the sectional coefficients was obtained by numerical
integration of the pressures and is not that whiech is '"tabulated" in
Refs. 29 and 30.

For these planar configurations, the theory is a linear theory and
thus tabulation of the total forces and moments is sufficient to illus-
trate overall agreement. Table 2 is a comparison of the 1lift curve slope
and moment curve slope for the three planar configurations under study.
as found by numerical integration of the curves in Figs. 26, 28 and 30.

From Figs. 25-30 and those in Appendix A, it is difficult to picture
exactly how the sectional loading profiles are spread over the wing.
Consequently, Figs. 31-34 were produced showing the isobars and the large
influence produced by the wing tips. Note also the supersonic leading edge
behavior for the low aspect ratio trapezoidal wing and rectangular wing.

It is apparent from Figs. 25-30 and from Table 2 that the linear

theory is excellent for most cases considered. The disagreement near the
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Table 2
Low AR High AR
Delta Trapezoidal Trapezoidal
Wing Wing Wing
C Experiment .029 .033 .048
La
a=90 Theory .029 .032 .053
Experiment -.029 -.019 -.064
(Cy )
y
a -
a =20 Theory -.029 -.019 -.073

leading edge and wing tip is to be expected and is due to wing thickness,
shocks, and wing twist; the lattev, of course, is not significant for the
low aspect ratio wings.

Deformed Wings

These same wings under various kinds of deformation were also
analyzed by including vorticity paneling as well as the 3-~D theoretical
loading terms in the ACp distribution. Deformation shapes of three of
these wings are shown in Fig. 35. The delta wing (No. 1) in Fig. 35
was cambered and the slope relative to the chord line of the mean
camber line was determined to be

6 = -3.00825 + tan” '[tan 6°(&-Entn)] (100)
where n=y/(b/2) and €=(x-xLE)/c. The camber (see Fig. 35) is uniform in
the spanwise direction and produces a maximum deflection angle of three
degrees relative to the chord line. Although this seems like a small

task, this is actually a severe test of the theory and its agreement with

experimental data. 1In Figs. 36 through 41, results are presented for three
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deformed configurations at a Mach number of 2.01 and angle of attack of
6 degrees. A more complete summary of agreement between the theory and
experimental data is presented in Appendix A.

For the cambered delta wing, agreement at the inboard stations is
relatively good while outboard agreement is rather poor. However, note
that in the regions where most of the wing loading occurs, the agreement
is satisfactory. Additionally, the inclusion of the doublet paneling
terms in the mathematical formulation provides the correct trends and an
added degree of accuracy.

For the same planform shape, linear spanwise twist is added to the
camber deformation such that the mean camber surface is now defined as

0, 5= tan” }[0.140541(E-En+n)n] (101)

Results of this configuration are shown in Figs. 38 and 39 and in
Appendix A. Similar results are obtained for these cases as was observed
for the cambered (alone) case. Agreement is acceptable at the inboard
stations but is questionable at the outboard stations.

In observing the experimental data for both the cambered alone and
the cambered and twisted wings, the outboard stations (r. > .5) appear to

have a supersonic leading edge. Whereas the high leading edge sweep

angle gives rise to a subsonic leading edge. 1In addition, at the n = 0.5
station, a weak shock appears to be located near £ = .4 for M = 1.61 but
is not present for M = 2.0l (see Appendix A). Since the theory does not
account for the shocks, the disagreement in this region is not surprising.

The next wing subjected to the theoretical analysis was a 'warped"

trapezoidal wing (see Fig. 35). For both M = 1.61 and 2.01, the leading




g

MY AT
PR .

et ]

102

edge is supersonic and multiple "fold over'" regions occur because of the
low aspect ratio of the fact that the wing is trapezoidally shaped. The

equation governing the mean warped camber surface is

0y y = -tan” ! [-0.0334547 sin(?’—;n)sin(ng)] (102)

Results for this wing are presented in Figs. 40 and 41 and in
Appendix A. Considering the wing deformation, the agreement is remark-
ably good over the entire wing for both Mach numbers. Note also that the
addition of vorticity paneling to the ACp distribution predicts the right
trends and correctly accounts for local wing deformations in the upstream

running Mach cones.
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Elevon Loading

Very little experimental data exists for loading on an elevon
immersed in the wake of a wing in supersonic flow. The only data found
was Nielsen (Ref. 1) which included the blunt wing trailing edge as
previously discussed. Figure 42 is a comparison of the normal force
coefficient, C

and hinge moment, C,, versus wing angle of attack for

N’ H
an elevon deflection angle of -10°. 1In this figure, the present theo-
retical results are compared to experimental data and to the theoretical
results from Ref. 1. In the present theory, the blanking effect from

the wing is included which seems to properly account for the normal force
coefficient variation. It is noted also that compressibility or the
Mach number effect, is also properly accounted for, thereby providing
excellent agreement (at least for this case) between experimental datu
and theory.

The hinge moment for the elevon is also plotted and agreement here
is not good except at very small angles of attack. Reasons for this
discrepancy may be the result of one of the following problems in the
analysis or perhaps combinations thereof: (1) It is known that viscous
flow in this region could cause large changes in the pressure field as
originally hypothesized in Ref. 1. However, because of the excellent
agreement of the normal force coefficient data from a potential flow
analysis and the schlieren photographs of this region, it is certainly
not conclusive that viscous effects dominate the solution. (2) The
downwash model as outlined in the theory section is inadequate in pre-

dicting the correct downwash velocities. As a matter of fact, if the

downwash distribution is assumed to be constant across the elevon span
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and chord slightly better results are obtained. However, since the total
normal force is predicted quite well, the chordwise distribution is
apparently in error. From the schlieren photographs (Fig. 23) it appears
that much more of the upper surface of the elevon may be blanked out than
that prvodicted in the theory. If this were true, the normal force coef-
ficients would decrease slightly and the moment coefficients would
increase (leading edge up) which would give rise to an increase in the
associated hinge moment. (3) The assumed location of the trailing
vortices relative to the elevon is perhaps incorrect. (4) 1In analyzing
the experimental data from Ref. 1, there is possibly a problem in inter-
pretation and conversion to the reference areas and lengths used in the
present theoretical analysis.

In conclusion, it is recognized that the flow f{ield immediately
behind the blunt wing trailing edge and elevon leading edge is not well
understood. Detailed experiments to measure pressure and loads accom-—
panied by schlieren photographs are required before an adequate model can
be postulated.

Finally, Figure 43 is a plot of the theoretically predicted normal
force and hinge moments for the elevon when a gap exists between the
elevon and the wing. Similar results are obtained as for the "no gap"
case but thé influence of the gap is clearly identified and the present

theory predicts the correct trends.
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TABLE A
Figure
Number Deformation Equation
Al-A28 No deformation
Cambered Delta Wing
A29-A32 _
6 =-3.00825 + tan” '[tan 6.0°(x - xy + y)]
'-
! Cambered and Twisted Delta Wing
A33-A36 _
8 = tan ‘[(tan 8.0%)(xy - xy° + yz)]
Warped Trapexoidal Wing
A37-A40

0 = -tan ![-0.033454 sin(ggx) sin(mx)]
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Pressure Distribution on a Flat Tapered Wing;
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SUBSONIC COMPUTER PROGRAM USERS GUIDE

I. General Description of the Main Program and Subroutines for
the Subsonic Program

MAIN PROGRAM - This is the executive segment which primarily controls and
coordinates the various tasks performed by the subprograms. Other
functions performed by the main program include: (a) all input and the
majority of output; {(b) non-dimensionalization; (c) calculation of the
boundary conditions (the "B" matrix); (d) computation of all total
characteristics, both exact results and numerical integrations (this

includes wing-elevon, fuselage, suction, and all combinations of these).

BLOCK DATA - This data gives coordinates of a non-planar mean line (XTB,ZTB)
as well as the slope (ZPTB) for use in calculating wing deformations.

The present data is for the deformed Hawk wing.

SUBROUTINE SURFIN - This routine computes the value of the surface integral
(the "A" matrix) by summing the effects of each grid panel at a control
point. It is called once for the wing and once for the elevon for each

control point.

SUBROUTINE SECLM - The sectional loading characteristics are calculated for
the wing or elevon in this subroutine. It is called after the pressure

loading coefficients are determined.

SUBROUTINE PRESUR - This subroutine is used, after the pressure loading "
coefficients are determined, to calculate and print ACp at NSPAN by

NCORD points on the lifting surfaces.
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SUBROUTINE GEOM -~ This subroutine sets up the geometry of both the grid

panels and the control points, and then centers the control points

t et med  Geed g

inside the grid element in which they appear. Basically, a cosine
distribution is used for both the grid elements and control points.

This routine is called once for the wing and once for the elevon.

SUBROUTINE INTV ~ This routine contains the actual equations of the sur-

face integral and, therefore, is utilized by SUBROUTINE SURFIN.

SUBROUTINE INVERT - Gauss elimination is used in this subroutine to
"invert" the A matrix and solve for the unknown leading coefficients,

B 's.
nm

SUBROUTINE HINGE - This contains the equations of the closed form solution

for the elevon hinge moment.

SUBROUTINE TLUP - This is a "table-lookup" routine which uses the data
given by the variables in BLOCK DATA to interpolate for wing mean line
slopes used in determining deformation angles. It is called by

FUNCTION WARP.

FUNCTION WARP - This function uses either the table-lookup or a function
definition to find wing/elevon deformation. It is called by both the
main program to determine deformation of control points (included in
the boundary conditions) and by SUBROUTINE SURFIN to determine deforma-

tion of grid panels.
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I1. INPUT DATA
A. Data Cards:
Card No. Format Variable List

1 1844 WING

2 7F10.0 SPAN,CR,CT,LAMDA, SAREA, CBAR,MACH

3 F10.0,15 ALPHA ,KSTOP

4 1015 NC,NS,NX,NY,NCF,NSF,NXF,NYF,NSPAN,
NCORD

5 5F10.0 CRF,CTF,DELTA,ALTWMX,EPS

6 F10.0,15,2F10.0 HNL, IDEF,AMP,DB

(Addizig’:;‘l 3F10.0 ALPHA ,DELTA , ALTWMX

("Additional cards" allows more than one case of the given
geometry to be run with different boundary conditiouns.
There should be (KSTOP-1) additional cards.)
B. Variable definitions (all linear dimension units must be consistent)
WING - Alphanumeric problem description
SPAN -~ Total wing span
CR - Wing root chord
CT - Wing tip chord
LAMDA - Wing leading edge sweep angle
SAREA,CBAR - Reference area and reference length. 1If 0.0 is input,
the total area and mean aerodynamic chord will bhe
calculated and used.

MACH - Mach number

ALPHA - Angles of attack of wing, in degrees. Leading edge up
is positive.

KSTOP - Number of cases of different boundary conditions that are
to be run.
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NC,NS - Number of chordwise and spanwise control points (re-
spectively) on the wing (typically 4x4).

NX,NY - Number of chordwise and spanwise (respectively) grid panels
on the wing (typically 45x45).

NCF,NSF - Chordwise and spanwise control points on the elevon
(typically 3x4). NSF must be equal to NS.

NXF,NYF - Chordwise and spanwise grid panels on the elevon
(typically 20x45). NYF must be equal to NY.

NSPAN,NCORD - Number of spanwise by chordwise points at which AC
distribution is to be printed out. P

CRF - Elevon root cihord

CTF ~ Elevon tip chtord

DELTA - Elevon deflection angle, in degrees. Trailing edge downward
is positive.

ALTWAX - Maximum twist angle of the wing tip, in degrees. Leading
edge down at the tip is positive.

FPS ~ Gap distance between wing and elevon.

HNI. - Hinge line location from elevon leading edge.

IDEF - Deformation check. If IDEF=1, the Table-Lookup Routine 1is
used. If IDEF=0, a function definition is used.

AMP - Amplitude of a function deformation.

DB - Diameter of fuselage.

OUTPUT DATA
Major Headings Are:
A. INPUT DATA - Dimensional imput as it was given on the data cards.

B. ACTUAL VALUES USED IN PROGRAM - Variables non-dimensionalizcd
by b/2.

C. CONTROL POINTS - Location based on non-dimensionalization of
local wing chord by b/2. Gap distance is not included in XO.
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BOUNDARY CONDITIONS
I - Control point number.
B - Boundary condition matrix values.

X0,Y0 - Control point location as above, except with gap distance
included.

ALTW - Local twist angle at the control point (degrees).

TAU - Local deformation angle at the control point (degrees).
POLYNOMIAL COEFFICIENTS - Bnm's of pressure loading function.
PRESSURE DISTRIBUTION

ELEVON LEADING EDGE - Location in percent local chord (gap included)
Y - Nondimensional spanwise location of the given pressure.

X - Nondimensional chordwise location in percent local chord
(gap included).

XDIS - Chordwise location in terms of nondimensionalization by b/2.
DCP - ACp (pressure loading)
C - Local chord length of the wing only.
SECTIONAL CHARACTERISTICS
CLW - ccg of wing only.
CMW - czcm of wing only
CLE - ccy of elevon only
2

CMH - ¢ < of elevon only

CCL - cc, of total wing-elevon.

A
CCM - czcm of total wing-elevon

XCpP

Center of pressure in percent local chord behind the leading
edge.

Y - Nondimensional spanwise location of the sectional characteristics.

C - Local wing chord nondimensionalized by b/2.
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CF - Local elevon chord nondimensionalized by b/2.

CTDT - Total local wing-elevon chord (gap not included)

CDW - cc,, of wing only
Di
CDE - cc,, of elevon only
Dy
CCDh - cep of total wing-elevon
i

TOTAL FORCES AND MOMENTS

TOTAL LIFT, etc. - Characteristics of wing-elevon combination.

CORRECTED LIFT - Lift multiplied by sin a.

LIFT AND MOMENT DUE TO SUCTION - Contribution of suction only.
Lift value is correct only when a>0. Both terms are incorrect
for &#0.

FUSELAGE LIFT AND MOMENT - Contribution of fuselage only.

WING-FUSELAGE... - Wing-elevon fuselage characteristics.

TOTAL CONFIGURATION...- Wing-elevon-fuselage-suction characteristics.

HINGE MOMENT ABOUT ELEVON HINGE LINE - Elevon hinge moment.

IV. NON-PLANAR CONFIGURATION OPTIONS

Wing Twist - Statement numbers 2310 and 4540 calculate wing twist
with a linear distribution along the span (YO(J)). Other (spanwise)
variations may be used by substituting the proper equation.

Deformations

1. Statement numbers 2200 and 5430 must be deleted if the elevon
is to be deformed in addition to the wing.

2. The FUNCTION WARP routine supplies the deformation angles

a. If the input variable IDEF is 0, the equation for WARP
given by statement number 9430 is used to compute deforma-
tions. The variable (also input) AMP may be used to
modify this equation. The supplied equation must be for
the slope (dz/d§) of the mean line. Different functions
could be used at different spanwise locations if the
variables YO(J) in statement number 2160 and YA in state-
ment number 5450 are included in the argument list, and
the appropriate modifications are made to FUNCTION WARP.

b. If IDEF > 1, a table lookup routine is used to compute de-

formations based on a numerical table given by the variables
in BLOCK DATA.




SUPERSONIC COMPUTER PROGRAM USERS TUIDE

I. General Description of the Main Program and Subroutines
for the Supersonic Program

MAIN PROGRAM
This is the executive portion of the program and basically controls
E the sequencing of the other subroutines. All data to be read into memory
is completed here as well as all nondimensionalization. Decisions are
made on the type of pressure solutions desired and appropriate transfer
of control is made. Geometry for the vorticity paneling for the wing
and elevon is completed. Wing pressure solutions are called and the
trailing legs vorticity strengths are computed. Most of the entire

elevon solution is complete in this program segment and appropriate

computational output is generated.
Subroutine BLOCK DATA
This subroutine establishes the spanwise locations at which the
chordwise pressure distribution si computed. If one wishes to alter these
locations, it must be done in this subroutine.

Subroutine DAUGHN

This subroutine calculates the downwash of any arbitrary location on
| the elevon due to the trailing vortices on the wing. This routine is
called after the wing loading and trailing vorticity strength is estab-

lished.
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Subroutine EXACT
This subroutine calculates the pressure distributions on the wing or
elevon using planar three-dimensional supersonic flow theory. This
subroutine calls the load coefficient subroutine where sectional forces
and moments are calculated.
Subroutine LODCOF
This subroutine takes the ACp arrays and integrates the chordwise
distribution using Simpson's Rule. It integrates the spanwise distribu-
tions using trapezoidal integrations.
Subroutine DOWN
This subroutine calculates a numerical value for the downwash on
the wing only at some (x,y) location. It is used primarily to check
boundary condition agreement.
Subroutine SURF
This subroutine computes the surface integral over the forecone
from the field point (x,y) by summing the contribution from each subpanel.
In doing so it loads the "A" matrix to be inverted later for the unknown
polynomial coefficients, BL.
Function CW
This function evaluates a cosine function which is used frequently
in the program.
Subroutine INTV
This subroutine evaluates the results of the downwash integral over

a subpanel.
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Subroutine INVERT
This subroutine is a matrix "inversion' routine which actually uses
a Gaussian reduction to find the unknown coefficients, BL'
Function PRESS
This function evaluates the appropriate expression to find the ACp
at a point using supersonic three-dimensional theory.
Subroutine ELLIP
This subroutine numerically evaluates an elliptic integral used in
Function Press.
Subroutine THA
This subroutine establishes the deformation equations of the deformed
wings and returns the local wing slope relative to the wing chord line.
Subroutine SUM
This subroutine performs a summation step used often in Subroutine
SURF.
Subroutine ETHA
This subroutine is identical to subroutine THA except the deformation

equations define local slopes on the elevon surface.

II. Input Data

A. Data Cards:

Card No. Format Variable List

1 815 IDOWN, IWGEX, IWGVP,IELEX, IELVP,
IPRINT, IWGDF, IELDF

2 615,2F10.0 NC,NS,NX,NY,NCORD, NSPAN,VAG,DB

3 12A4 CONFIG

4 4F10.0 SPAN,CR,CT,LAMDA

5 4F10.0 SWING, CBRW,MACH,ALPHA

6 415,F10.0 LVON,NCE , NXE,NCRE,CRE

7 5F10.0 CTE,GAP,DELTA,XH,SIV

8 2F10.0 THIK, THTED

————y




IF

o e poe r———

IF

IF

IF

IF

IF

IF

NC

NS

. NX

NY

——— -

Additional configurations can be run by adding sets of cards

4 through 8. After the last set to be run, SPAN should be
read in as 0.0.

B. Variable Definition (all linear dimension units must be consistent)

(IDOWN = 1) a subroutine is called in which the downwash is
computed at all pressure computed points on the wing.

(IWGEX = 1) uses exact solution for wing.

(IWGVP = 1) uses vortex paneling also for wing solution.
(IELEX = 1) uses exact solution for elevon.

(IELVP = 1) uses vortex paneling also for solution of elevon.
(IPRINT = 1) a more extensive printout is produced at inter-

mediate computation points.

(IWGDF = 1) the wing has deformation as specified in function
THA. Otherwise wing deformation is zero (planar).

(IELDF = 1) the elevon has deformation as specified in function
ETHA. Otherwise elevon deformation is zero (planar).

is

is

is

is

N NCORD
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the number of chordwise control points for the wing.

the number of spanwise control points for the wing.
the number of grid points in the chordwise direction.
the number of gridpoints in the spanwise direction.

is the number of chordwise points at which the pressure is

computed for the wing.

VAG is the angle in degrees that the vortices leave the wing
reference plane.

DB is the dimensional body diameter.
CONFIG is the alphanumeric configuration description.

SPAN is the dimensioual total wing span.

NSPAN is the number of spanwise points at which the pressure is i
computed for the wing.

| | o “ii““. i
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CR is the exposed wing root chord.

CT is the wing tip chord.

LAMDA is the wing leading edge sweep angle in degrees.

SWING is the dimensional reference area. If 0.0 is read in, the
program will compute and use the wing area as the reference
area.

CBRW is the dimensional reference length. If 0.0 is read in,
the program will compute and use the mean aerodynamic chord
as the reference length.

MACH is the freestream Mach number.

ALPHA is the angle of attack of the wing alone in degrees.

IF(LVON = 0) the elevon is omitted from all computations and
the wing alone case is analyzed.

NCE is the number of control point locations on the elevon in
the chordwise direction.

NXE is the number of subelements on the elevon in the chordwise
direction.

NCRE is the number of points in the chordwise direction on the
elevon at which pressure is to be computed.

CRE is the elevon root chord.
CTE 1s the elevon tip chord.
GAP is the gap distance between the wing TE and the elevon LE.

DELTA 1is the elevon deflection angle in degrees relative to wing
trailing edge down is positive.

XH is the dimensional distance from the Y axis to the elevon
hinge line.

SIV is the nondimensional chordwise location at which the
wing trailing vortices are started.

THIK 18 the dimensional wing TE thickness.

THTED is the (positive) wing surface slope at the trailing edge
in degrees.
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III. Output Data

Major Headings Are:

A. Input Data - Dimensional or nondimensional data as it was
given on the data cards.

B. Actual Vzlues used in Program - Variables after non-
dimensionalization by b/2.

C. Pressure Distribution -

D. Sectional Properties as Follows:

YA (XLE) CA CCL CCMY XAC XCPA

2
(n) (xLE) (c) (ccl) (c cmy) (€ac) (Xac)

E. Total load coefficients from "exact" theory

CN - Total normal force coefficient for wing only.

CLT - Total load coefficient.

CMTY - Total moment coefficient.

YBAR - Spanwise location for mean aerodynamic chord.
SIAC - Chordwise location for aerodynamic center.

- CMC4 - Moment coefficient about the quarter chord.

CD-CDMIN - Induced drag.
SAREA - Reference area.
CBAR - Reference length.
F. [For deformed wings, the following is also output]
1. (a) Control point location; X0, YO, local chord; CA,
The x location of the last row of control points is re-
located at trailing edge of wing and new locations are

printed out. ]

(b) XO and YO are the nondimensional control point
locations on the wing.




(c)
(d)

)]
(c)

(d)
3. (a)

5. (a)

(b)
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Deform angle is the local deformation angle.

B is the boundary condition (right-hand side
side of equation 57).

x and y are the dimensional location of the control
points.

B is the boundary condition (reference equation 59)

WW is a dummy variable representing part of
boundary condition term.

BOD DBLET UPWSH is the body doublet upwash.

Polynomial coefficients are the coefficients which
describe AC_ loading distribution on the wing
(Reference pequation 54).

Pressure c¢istribution for wing using doublet
paneling. The left-hand column, PSI, are the
nondimensional chord-wise locations; the top row
are the nondimensional spanwise locations at which
the pressure is computed.

The next output is the sectional coefficients
for the deformed wings (reference section D, above).

Next is the total coefficients for the deformed
wings (reference section E, above).

1. XG and YG are the x and y locations of the starting
point of the trailing vortices on the wing.

2. GMA are the strengths of the trailing vortices.

Pressure distribution for elevon using exact functions
(reference section 4(a)).

This section contains the sectional properties for the elevon
(reference section D).

Total force coefficients for the elevon (reference section E).

Conversion to Neilsen's Data.




